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Abstract. In this paper, it is pointed out that the application of the projectio- 
operator method leads to the violation of II consistency condition if the so-called 
Born approximation is made in the nm-Msrkwisn m t e r  equation. Since only the 
validity of this consistency condition guarantees obtaining non-mgatin probabilitica, 
its violation malres the applicability of the whole method in this approximation 
meaningless. Therefore, it is demonstrated that an additional Markov approximation 
restore the validity of the consistency condition in the m t e r  equation, and thus 
re-establishes the applicability of the projection-operator method. h t h o m o r e ,  the 
pmaibility of obtaining a seU-consiatent projection-operator method is also examined. 

1. Introduction 

We begin with a few words about the idea of the projection-operator method (POM). 
In the caSe of open systems (usually systems interacting with a reservoir) perturbative 
methods based on weak interaction can be applied. As the most powerful and elegant 
method seem to be the so-called POM developed thirty years ago by Nakajima [l] 
and Zwanzig (2-41 for timeindependent projection operators (Pos) and generalized by 
Robertson [5 ,6 ]  and Zubarev [7-91 to time-dependent POs. For successful applications 
of the POM and its modifications to different problems of non-equilibrium statistical 
mechanics and quantum optics, we refer to [lo-251. 

The fundamental idea of the POM is the derivation of a so-called master equation 
(ME) for a reduced density operator describing the dynamics of the relevant part of 
some isolated system. This relevant part of the system usually concerns an open 
system being a subsystem of the total system. However, the ME describing the time 
evolution of the open system is a very complicated integro-differential equation which 
cannot be solved exactly. In order to obtain a solution of the ME, a perturbative 
aeries expansion as to the strength of interaction between the system of interest and 
reservoir should be carried out. Nevertheless, this expansion is superior to that of 
the elementary perturbation theory, since an infinite number of terms of all orders of 
the usual perturbation expansion have to be summed up in order to recover a given 
finiteorder expansion in the ME. In practice, in the ME approach nobody goes beyond 
the second-order approximation in the interaction, which is usually the lowest order 
approximation and, therefore, it is generally referred to as the Born approximation 
(BA). 
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As long as no kind of approximation is used, the ME is an exact equation of motion 
(EM) for the reduced density operator Pp( t )  preserving the norm, 'Ik[Pp(t)]  = 1, as 
well as the positive definiteness of the operator Pp(t). The problem arises if we make 
the BA. This leads, namely, to a non-Markovian equation. The fact that  from this 
equation some authors [26, 271 obtained unphysical results (negative probabilities) 
shows us that the approximation procedure has violated some consistency condition. 

It is not an easy task to point out inconsistencies arising from the application of the 
BA in the ?OM; Some mutual dependence between the BA and Markov approximation 
(MA) has been discussed by Grabert et a/ [28]. Furthermore, Davis [29] has shown that  
the weak-coupling approximation, when carried out consistently, leads to a Markovian 
semigroup propagator preserving the positivity of the density operator. In spite of 
these investigations the meaning of the BA and the consequences arising from its 
application are still obscure. Therefore, the main objective of the present paper is to 
clarify some of these consequences which were very often overlooked in the literature 
[26, 271. 

In section 2, it will be shown that the POM as well as the Heisenberg EMS lead 
to identical non-Markovian EMS which, in the BA, violate a Consistency condition. In 
section 3, a new PO leading t o  a self-consistent POM will be examined. 

2. The Argyres-KeUey POM and the Heisenberg EMS 

By applying the POM [l-4, 14, 211 to the Liouville (von Neumann) equation for the 
statistical density operator p ( t )  in the interaction picture, 

-= -  dPp(t) I' dt' PL~.(t)T(t , t ')L,,( t ')Pp(t')  
di Jo 

( 2 . i j  

where we used 

(2.3) 

i2.4j 

T(t, t ')  = 7 e x p  [- i~~dt"( l I -P)L, , ( l")  1 
,-\- P( ...j =pR(u j i rR(  . . . j  PiARj i jP=O 

do) = pdo) = f A ( O ) @ f P R ( O )  (2.5) 

with 1 = lIA @ 1, as the unit operator in the Hilbert space 7f = 'HA @ ' H R  of the total 
system A + R, TrAR as the trace over 'HA @ 'H,, pA(0)  and p R ( 0 )  as initial density 
operators of systems A and R! and 7 being the Dyson timeordering operator. 

The application of the BA (second-order approximation) to the ME (equation (2.2)) 
leads to the following non-Markovian equation: 
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To see whether any consistency condition (leading to  non-negative probabilities) is 
violated in obtaining this M E  is almost an unmanagable task. 

To prove the positive definiteness of pA(t)  we need to define diagonal operators in 
the Hilbert space 'HA: 

and prove that the expectation values 

= TrAIA,pA(t)l (2.8) 

which determine the probabilities for finding the open system A in any of the states 
Ir),, are non-negative. 

In order to do this we will change the picture, and derive EMS for A, in the HP. 
In our case, for any operator 0 in the HP it holds that 

OH(t,t ')  = u,(t,o)o(t')cr,(t,o) Off ( t )  = O H ( t , O )  = U,(t,O)O(0)UH(t,O) 

(2.9) 

where the time-development operator LIH(t, 0) is given by 

(2.10) 

Then, the Heisenberg E M  reads: 

Quite generally, the interaction Hamiltionian in the interaction picture can be written 
as 

= v A , j ( t )  @ vR,j(t) (2.12) 
i 

where VAJ(t) and VR,j ( t )  are Hermitian operators acting in the Hilbert spaces 'HA 
and 'MR. respectively. In the case of a reservoir, V, , i ( t )  reads as 

where giA are the coupling constants between the system A and the reservoir R, and 
bA(t), b:(t) are the boson annihilation and creation operators of the mode X with the 
frequency wA.  

The EMS for our diagonal operators A,(i)  in the HP are given by 



!%@ = -iLAR(t,t)bf(t) H = - i C V ? j ( ( t , t ) L ~ , j ( t , t ) b f ' ( t )  
j 

dt 

= iC ~ ? ~ ( t , t )  Cg;AeiYlt  (2.16) 
j A 

t 

bf(t) = bf'(0) + C i g J A  dt' Vfj(t',t')eiwrt'. (2.17) 
0 j 

By inserting this equation (2.17) into equation (2.14) and using the so-called normal 
ordering (which means that ( b f ' ( t ) ) +  appears to  the left and b f ( t )  to the right of the 
operators of system A ) ,  we obtain 

As is well known, the equal-time commutator properties of operators of systems A 
and R are preserved in the HP: 

(2.19) 

(2.20) 

(2.21) 

where OZ(t) ,  O iJ t ) ,  O:,,(t) and O i ( t )  are arbitrary operators of systems A and 
R, respectively. 

As was pointed out by Ackerhalt and Eberly [30], in order to get consistent 
results the validity of (2.19)-(2.21) must be preserved in the approzimate Heisenberg 
EM8 as well. If the application of the commutator relationships (2.19)-(2.21) in the 
approximate Heisenberg EMS leads to  the violation of any of these relationships, the 
inconsistency is proved. 

The question about the kind of the consistency relationship, which should be 
fulfilled in order to  get non-negative probabilities in the subsystem A, can be easily 
answered. Namely, the preservation of the validity of the relationship 

A r ( t ) A r ( t )  = AB(t)  (2.22) 
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for diagonal operators of subsystem A by the Heisenberg EMS guarantees the existence 
of only non-negative probabilities: 

( A I ) ,  = (tl(O)IAP(t)ltl(O)) = (tl(o)lArH(t)AP(t)l11(0)) > 0 (2.23) 

since the norm of a vector AY(t)($(O)) is always positive in the Hilbert space. 

condition of pure states, since a!! initla! conditions c m  he +!ten 29 
In equation (2.23), for the sake of simplicity, we have chosen the special initial 

~ ( o ) = C p m I ~ m ( O ) ) ( ~ ~ ( o ) I  O < P ~  < 1  (2.24) 
m 

and 

(AI)* = DARIAP(t)P(O)I = C(tl,(0)IAP(t)ltlmm(O))Pm. (2.25) 

To see whether the consistency condition (2.22) is fulfilled by the approzimate 
Heisenberg EMS, we have to write it in the form: 

m 

Now, we turn to the approrimate Heisenberg EMS. It  is easy to see that the BA 
(second-order approximation in the interaction) in the exact equation (2.18) leads to 
a non-Markovian equation: 

I t  is clear that  the consistency equation (2.26) leading to non-negative probabilities is 
violated by equation (2.27). Namely, if one inserts equation (2.27) into equation (2.26!, 
because of the appearance ofoperators # ( t )  and AP(t') at different times t and t', the 
left-hand side of equation (2.26) does not equal the right-hand side anymore. In other 
words, the appearance of the operator AP(t ' )  at times t ' ,  t' < 1 in equation (2.27) is in 
contradiction to the ezact equation (2.18) where the time rate change of the operator 
A$(t )  does not depend on Ay( t ' )  a t  previous times 1' < t .  This means, in contrast to 
equation (2.27)! the exact equation (2.18) is a Markovian equation. Therefore, a8 will 
be shown in the following, the inclusion of the MA (neglecting memory effects) into 
the BA, leads to the prtservation of the consistency relationship (2.26). Namely, a8 
was demonstrated by other authors [30], the BA including the MA can be performed 
by replacing VIj(t',t') by Vt,(t,t') in  the integrands in equation (2.18), or doing 
this in equation (2.17) directly. This new Markovian equation immediately fulfils the 
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consistency relationship (2.26) if the equal-time commutation relationship between the 
operators of systems A and R, equation (2.19), (whose validity must be demanded in 
the approximate EM8 as well, 88 waa pointed out by Ackerhalt and Eberly [30])  are 
applied. 

In this way we have shown that only the BA including the MA preserves the 
validity of the consistency relationship (2.26) leading to non-negative probabilities 
(2.23), whereas in the case of the BA without the MA this relationship is not valid any 
more and negative probabilities may arise (see e.g. [26, 271). In order to make these 
statements vdid in the case of the POM as well, we have to show that in the BA from 
both equation (2 .27)  and the ME (2.6) the same EM for the expectation value of any 
operator 0, follow. Namely, from (2.6) it follows that 

Using (2.12) and (2.15) we get 

- [LA,j(t)oAlvA,j , ( f ' )  @ VRj(t)VR,jl(t')} ' 

By inserting (2.29) and (2.13) into (2.28) we obtain 

(2.29) 

(2.30) 

where we used the special initial condition of a reservoir at T = 0 (bosonic vacuum): 

pR(O) = 1{0))({0)1 (2.31) 

and the relation 

[vR,j,(t')v,,j(f)pR(o)I = c g j O A g j A  eiwA(t-t') (2.32) 
A 

We now sketch the derivation of the EM for the expectation value (OA)t = 
TrAR[p , (0 )  @ pR(0) O z ( t ) ]  by using the Heisenberg EMS in the BA. It is clear that 
(2 .27 )  is valid for any operator Oz( t )  of the system A if AT(t )  is replaced by Of( t )  
throughout the equation. Then by multiplying this equation by pA(0)  C3 pR(0), 
afterwards carrying out the trace over it, and taking into account (2.31), (2.30) of 
the POM follows. 
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3. Special POs and a new self-consistent POM 

In this section, in order to  clarify entirely the conseqences arising from the application 
of the BA in the POM, we introduce new special POs which will make the invention of 
a new self-consistent POM possible. 

For the sake of simplicity, we restrict our initial conditions to the pure states 
IW)): 

PPS(0) = I t l ( O ) ) ( ~ ( O ) l  (3.1) 

without restricting the generality. Namely, aa is well known, a generalization to a 
statistical mixture is always possible by weighting the different initial pure states 
I&(O)) with the corresponding probabilities pm. 

In contrwt tn t,he Arvm-Kelley PO which nrojecta ontn a m b r p l ~ m ~  here we 
define PO8 of different order N projecting onto subspaces of the same order. 
The subspace is created by the N-fold action of the non-restricted interaction 
Hamiltonian HA,, i.e. is defined by the state vectors: 

{(~Af i ) ’ I+(o)) ,  I = 091,. . . , N } .  (3.2) 

All lower-order spaces % S ( t )  are contained in the higher-order spaces as(“‘), m > k 
as subspaces. The PO PN is the projector onto the subspace % S ( N )  and is defined by 
the corresponding unit operator: 

P N -  - U s ( N )  N = 0,1,. . . . (3.3) 

By applying the PO 

FN(...)Z PN(...)PN (3.4) 

to the Liouville equation (2.1), the following ME in the BA can be derived: 

d ‘ p N p ( t J f . N J  = -iPNL,,(t)PNp(t)PN -i dt‘ ~NLLAR(t)(U-~N)LAR(t’)PNp(t’)PN 
-? . . - . . - . 

dt 

(3.5) 

where we used p(0) = p”J(o))(~(o)lP~ = ItL(O))(tl(O)l. 
By taking into account the fact that the operators !H*,~!fUS(N)!H, ,~!”;I :  I‘ = 

0, 1,. . , , K act in the subspace X s ( N + K ) ,  the integrand of (3.5) can be further reduced. 
In other words, as a consequence of the BA, the action of the Hamiltonian H A R ( t )  is 
restricted to the subspace %S(Nt’): 

In the present case i t  is easy to see whether a consistency relationship has been 
violated in the ME (3.5) (derived in the BA). Namely, the application of the PO PN 
assumes the existence of a special form 

FNp(t )  = pNW(t))(+(t)IPN (3.7) 
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for the reduced density operator. In other words, the simplest consistency condition 
which should be fulfilled is the preservation of the special form (3.7) of the reduced 
density operator in the approximate ME (3.5). On the other hand, the validity of 
(3.7) implies the ezislence of a reduced d a l e  vector PNI$(t)). From this, it can be 
concluded that the existence of an EM for the reduced state vector P N l ~ ( t ) )  is a 
necessary and sufficient condition for the fulfilment of the consistency condition (3.7) 
in the approximate ME (3.5). However, it is easy to see that the equation 

cannot be written in the form of the ME (3.5), because the integration in (3.5) is to 
be carried out over the whole reduced density operator pNp(t') = PNl$(t'))($(t')lPN 
and not only over the part corresponding to the reduced state vector. This means 
that analogously to the Argyres-Kelley POM, the non-Markovian ME violates the 
consistency condition whose validity would guarantee non-negative probabilities. 

Similarly as in the case of Argyres-Kelley PO, if the MA is included into the BA, 
the consistency condition (3.7) is preserved, because by using (3.6), the ME (3.5) can 
he written in a form which is reducible to an EM for the reduced state vector 

(3.9) H S ( N + ' )  I 
A R  ) p N l $ ( t ) ) '  

Knowing this, it is easy to develop a new self-consislent POM. This has been done 
in [31, 321 where, instead of applying the POM to the Liouville equation, the POM has 
been applied directly to  the Schrodinger equation. In this way an EM for a reduced 
state vector has been obtained. Since from such an EM probability amplitudes can 
be calculated, it is clear that  the probabilities, which are squares of the moduli of 
probability amplitudes, are always non-negative. 
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